Fluid Starter Fertilizer Sources

RD Lohry D Zabel

Two Distinct Fluid Starter types

- Ammonium polyphosphates
- 100% orthophosphates

Two Distinct Fluid Starter Types

- With exception of nitrogen, the two types made from different sets of P & K raw materials
- Different marketing techniques

Plant Food Madness

• The market is becoming more diverse with blends

- 30/70 ortho/poly-typical high polyphosphate
- 50/50 ortho/poly
- 60/40 ortho/poly
- 70/30 ortho/poly
- 80/20 ortho/poly
- 100/0 ortho/poly

Blends are the growth area. K source can be KCl or KOH.

- We're no longer "purists"

High Ortho

High Poly

- N from ammonia, urea
- P from very (clean) orthophosphoric acid
- K from KOH
- S from ATS
- Micros from EDTA chelated sources

High Ortho

- N from ammonia, urea
- P from high grade orthophosphoric acid
- K from KOH
- S from ATS
- Micros from EDTA chelated sources

High Poly

- N from ammonia, UAN
- P from polyphosphate (converted from ortho)
- K from KCl
- S from ATS + other
- Micros from ammoniated complexes, sulfates, chlorides and chelates

Nitrogen Sources

- Nitrogen N
 - Ammonia NH3
 - Urea CO(NH2)2
 - UAN
 - Complexed N
 - Ammonium phosphate
 - Ammonium (thio) sulfates
 - Ammonium nitrates

All N comes from Atmosphere

- Earth's atmosphere is 78% nitrogen.
- 1884—Development of the theoretical principles for combining hydrogen and atmospheric nitrogen to form ammonia.
- Hydrogen (natural gas) + air and under high pressure (2200 psi) and temperature (400-500 C) + catalyst = Ammonia.
- 33,000 cubic feet of natural gas is needed to supply hydrogen for 1 ton of ammonia.

Ammonia NH3 82-0-0

- Used to make all other forms of nitrogen fertilizer.
- Both of our starter types use ammonia (sometimes called ammonium hydroxide when dissolved in water) ammoniacal

Urea CO(NH2)2 46-0-0

- Ammonia is reacted with carbon dioxide in the presence of a catalyst.
- Less corrosive than some other N fertilizers
- Most likely to be included in the high ortho mixes to adjust pH

Nitric Acid

- Not used directly as fertilizer, but is necessary to produce certain N fertilizers.
- Nitric acid (HNO₃) is produced by the oxidation of Ammonia with air in the presence of a catalyst, usually platinum.

Ammonium Nitrate

- Nitric acid and ammonia are reacted to produce ammonium nitrate (NH4NO3).
- 34-0-0. (20-0-0 in solution)

Ready to make 32% UAN

- We made urea from ammonia and CO2
 In solution urea might be 20 23% N
- Made Ammonium nitrate from nitric acid and ammonia
 - In solution about 20% N
- Time to combine them

UAN 32-0-0

- When ammonium nitrate and urea in more or less equal proportions are mixed with water, the solubility of the combination is greater than the solubility's of the individual components.
- 32%, 28% (urea ammonium nitrate) are stable solutions.
- What a happy outcome!

Phosphates

Fluid Phosphate Source

- Tricalcium phosphate rock (fluoroapatite)
- "Rock phosphate" in the "old days"
- Needed Bray II P test to measure it in the soil after application
- Turn phosphate rock it into phosphoric acid

Phosphoric Acid Sources

Wet, Thermal & Kiln Process Acid

Wet Process (Ortho)

- Made by reacting finely ground tricalcium phosphate rock (fluoroapatite-a naturally occurring mineral) with sulfuric acid.
- (Green or black acid) Used directly for production of Ammonium polyphosphate such as 10-34-0, 8-24-0, 9-30-0 and 11-37-0
- Can be further purified by removing fluorine— Animal grade acid
- Solvent extraction and arsenic removal to make food grade acid

Thermal or "Dry" Process

- Burn dry, rock phosphate in furnace: (furnace grade or "white" acid)
- Very pure—food grade—additional arsenic removal may be needed for critical industrial applications.
- Clear in color because all impurities that give color to P acid have been removed
- Ortho form

Kiln Process Acid

- New process called "Improved Hard Process"
- Makes low grade phosphate rock reserves commercially viable
- Increase phosphate recovery from existing reserves
- May significantly extend commercial viability of phosphate reserves

Phosphate Types

- Orthophosphates
 - Simplest form of liquid phosphate
- Polyphosphates
 - Complex phosphate chains (polymer)
 - Formed by removing water from ortho
- Monopotassium Phosphate
 - Phos acid reacted with potassium hydroxide
 - Can be ortho and/or poly

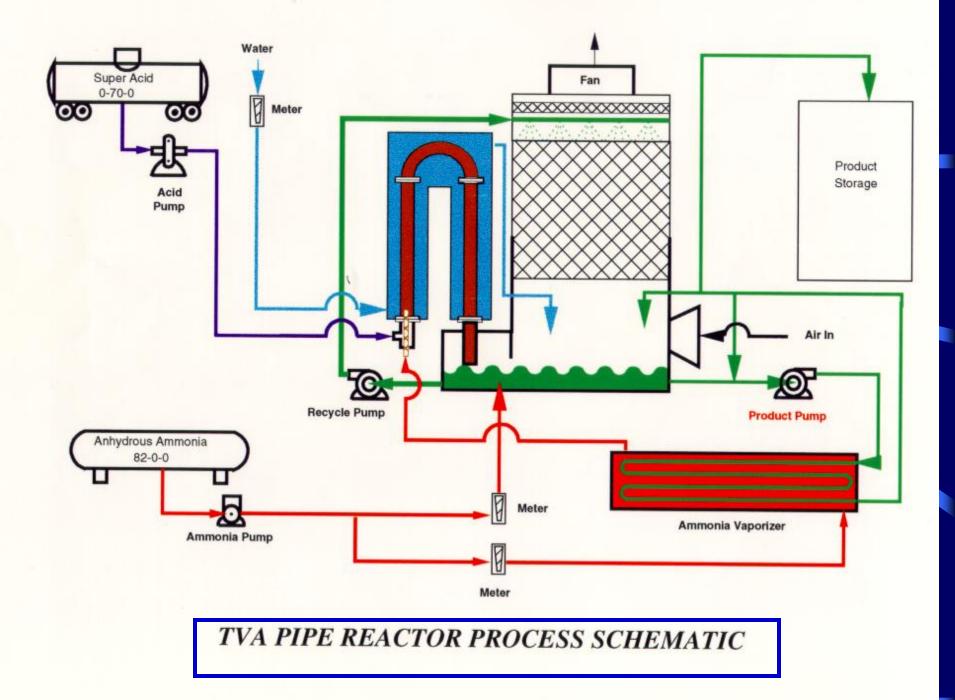
Polyphosphates

What are they? How they are produced? What do they do? Precautions

What is a polyphosphate?

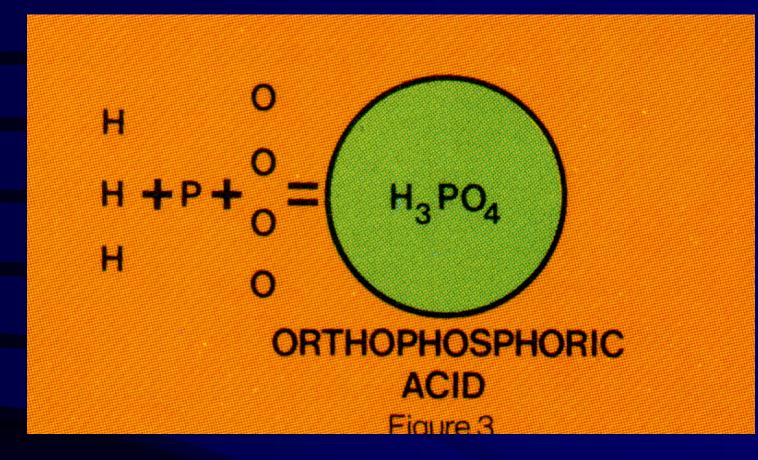
- Polyphosphates are molecules containing more than one phosphorus atom
 - Prior to the advent of the TVA pipe reactor process they were very difficult to make
 - Only source lay in "high poly" superacids (which are very corrosive)
 - Required high heat and high vacuum conditions
 - 50% poly was about the most that could be achieved

Why develop Poly P?


- Industry wanted higher P grades
- Save on transportation—more P per load

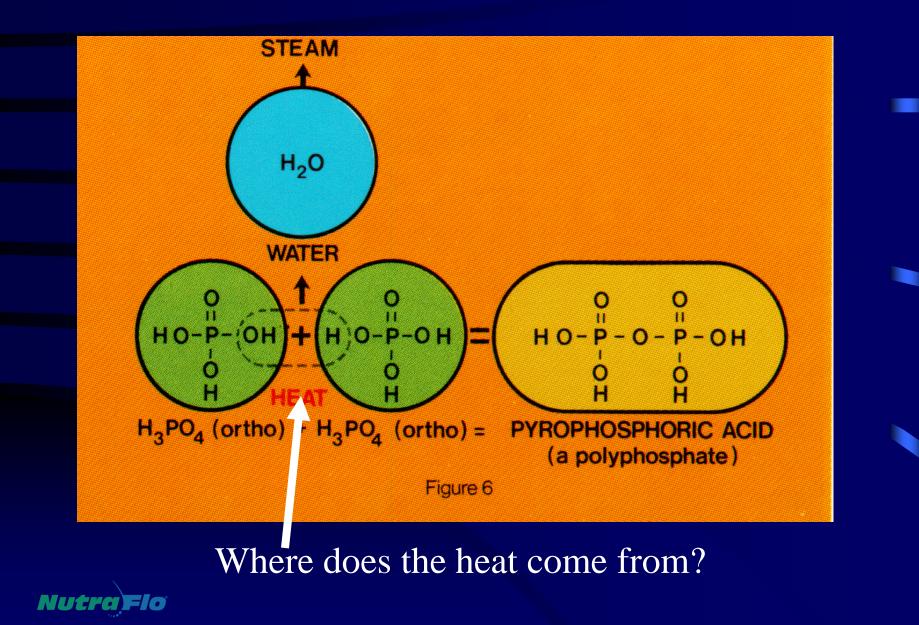
TVA PIPE REACTORS

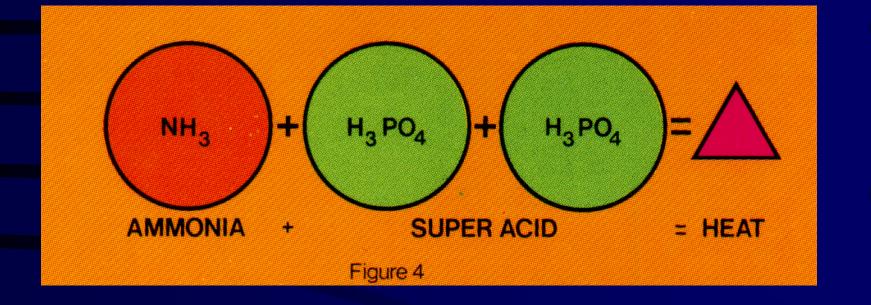
How they work



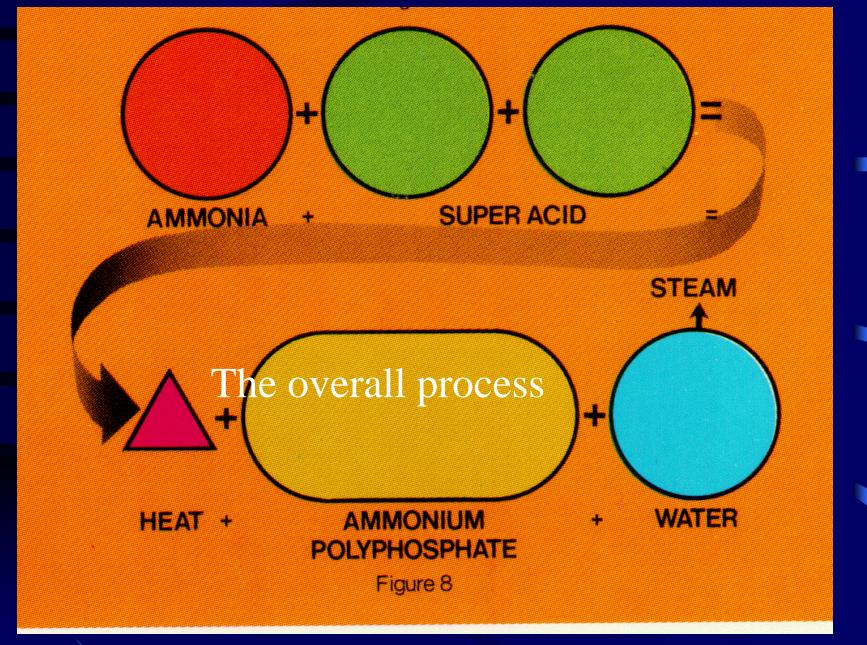
Benefits of the TVA pipe reactor process (Developed in the mid-60's)

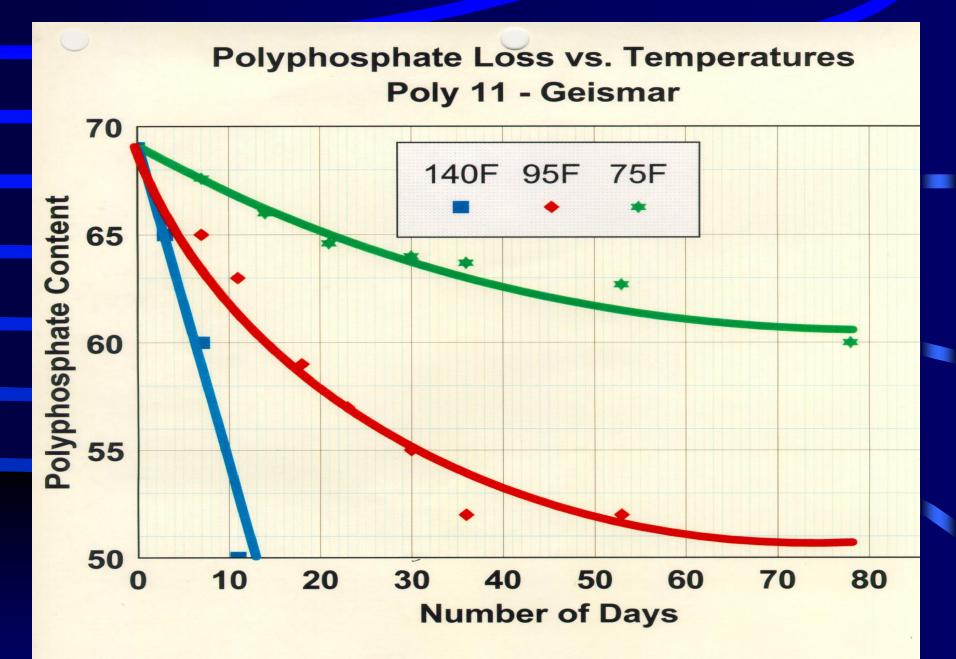
1. Allowed production of High poly ammonium phosphate solutions


- 2. Eliminated the need for high poly superacids
- 3. Higher grades of phosphates saved on shipping P



The basic building block for polyphosphates





Ah-ha! An Exothermic Reaction 600 to 700°F

Nutra Flo

nonortho.pre flw tk

Potassium

- Widely distributed in earth's crust
- Mined, brines in saline lakes and seas
- Underground deposits
- 60% of world's reserves are in North America—most in Western Canada

Monopotassium Phosphate High OrthoP/KOH 'low salt'

- React KOH with Phos acid
- Exothermic reaction—heat released 220°F
- Minimizes escape of ammonia when reacted with urea and ammonium phosphates
- Ortho and/or poly P
- Used in production of low-salt starter and foliar fertilizers, fungicides (powdery mildew), buffering agents and food additives (Gatorade) and for greenhouse and hydroponics nutrient source

Monopotassium Phosphate

- 6-24-6 high orthophosphate starter contains 3 kinds of potassium phosphate
 - Potassium orthophosphate monobasic (predominate form)
 - Potassium orthophosphate dibasic
 - Dipotassium pyrophosphate
- Very low corrosion on mild steel
- Can have K included and still have salt index less than APP 10-34-0—K source for seed placement

Potash sources for fluids

- Potassium chloride
- Monopotassium phosphate 0-52-35
- Potassium carbonate
- Potassium thiosulfate
- Potassium sulfate
- Potassium nitrate

0-0-25-17 0-0-50-18 13-0-45

0-0-60(62)

0-0-30(32)

Most Common K Sources In our corner of the universe

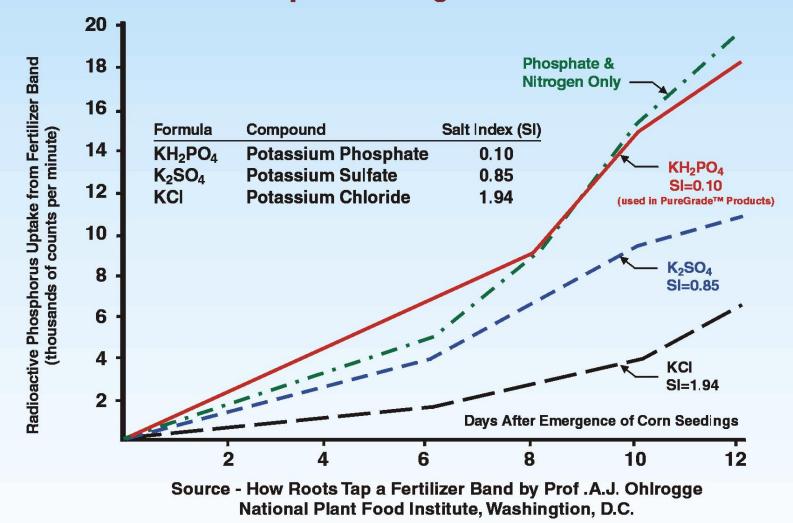
- KCl Blend with APP and UAN to make 7-21-7 and similar grades
- KOH blend with ammonia, urea, ortho and poly phosphates, thiosulfates to make an array of low-salt affect grades of fertilizer (potassium phosphates)

Fluid Sulfur Sources

- Ammonium thiosulfate
- Potassium thiosulfate
- Ammonium sulfate
- Potassium sulfate
- Urea-sulfuric acid

12-0-0-26 0-0-25-17 21-0-0-24 0-0-52-18

Micronutrient Sources


- EDTA chelated micros used for all fluids, -necessary for high ortho P products
- HEEDTA, NTA, DTPA and EDDHA
- Ammoniated zinc complexes—intended for products with high poly P content
- Sulfate, chloride or oxide forms
- Borates and Molybdates

Agronomic Considerations

- Or, does corn care? Yes, it just might!
- Handling, storage (sludge) and ease of use may be just as important to the grower as agronomic differences.
- Low salt index important for seed placement lean to potassium hydroxide (monopotassium phosphate) for K source
- Low salt index important for maximum P uptake when K is added
- Growers and their dealers have choices

Phosphorus Uptake by Corn as Affected by the Potassium Salt Added to Phosphate-Nitrogen Mixture in Band

© 2002 Nutra-Flo Company. All rights reserved.

Salt Index Values of Fertilizer Materials

	Salt Index		
	Per equal	Per unit of	
	wts of materials	nutrients*	
Material and analysis			
NITROGEN/SULFUR			
Ammonia, 82% N		0.572	
Ammonium nitrate, 34% N	104.0	3.059	
Ammonium sulfate, 21% N, 24% S			
Ammonium thiosulfate, 12% N, 26% S			
Urea, 46% N			
UAN, 28% N (39% a. nitrate, 31% urea)		2.250	
32% N (44% a. nitrate, 35% urea)			
PHOSPHORUS			
APP, 10% N, 34% P ₂ O ₅		0.455	
DAP, 18% N, 46% P ₂ O ₅		0.456	
MAP, 11% N, 52% P ₂ O ₅			
Phosphoric acid, $54\% \tilde{P}_2O_5$		1.613ª	
72% P ₂ O ₅		1 .754ª	
POTASSIUM			
Monopotassium phosphate, 52% P_2O_5 , 35% K_2O .		0.097	
Potassium chloride, 62% K2O	120.1	1.936	
Potassium sulfate, 50% K ₂ O, 18% S		0.852	
Potassium thiosulfate, 25% K ₂ O, 1 7% S			

^a Salt index per 100 lbs of $H_{a}PO_{4}$ *One unit equals 20 lb.

Mortvedt, "Calculating Salt Index"

Salt Index of Some Common Liquid Formulations

Formulation	Salt index	Salt index per unit of plant nutrient (20 lb)
2-20-20 ^a	7.2	0.17
3-18-18 ª	8.5	0.22
6-24-6 ª	11.5	0.32
6-30-10 ª		0.30
9-18-9 ª		0.48
10-34-0 ^b		0.45
7-21-7 °	27.8	0.79
4-10-10 °	27.5	1.18
28%UAN °	63.0	2.25

^a These grades are formulated using potassium phosphate as the K source.

^b Use in seed-row placement with caution.

° Not suggested for use in seed-row placement. Mortvedt, "Calculating Salt Index"

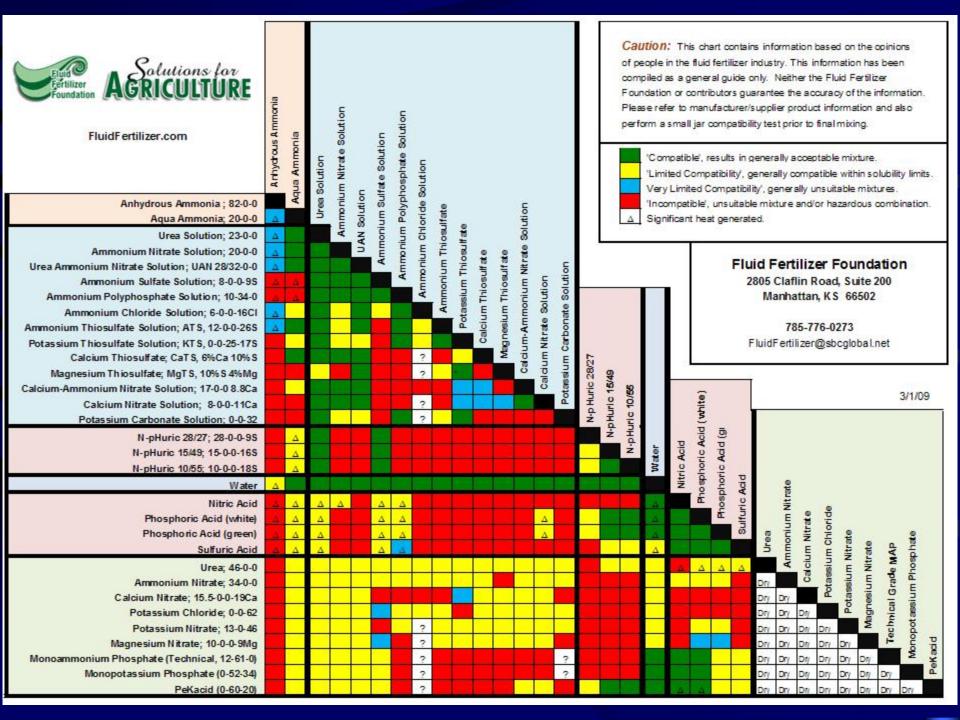
Calculating Salt Index of 7-21-7

							—— Salt index ——		
Material	% Nutrient	lbs/ton	N	Nutrient units P ₂ O ₅	K,O	per unit (20 lb)ª	in formulation		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
10-34-0	10% N, 34% P ₂ O ₅	1,235	6.2	21.0	—	0.455	12.4		
UAN	28% N	57	0.8	_		2.250	1.8		
KCI	62% K ₂ O	226	—	—	7.0	1.936	13.6		
Water		482	—		_				
		2,000	7.0	21.0	7.0		27.8 ^b		

^a Salt index per unit (20 lb) of plant nutrients, listed Table 1, also called the partial salt index. ^b 0.79 SI/unit plant nutrient

Mortvedt, "Calculating Salt Index"

Calculating Salt Index of 6-24-6


		——— Salt ir			index ——		
	%			Nutrient units		per unit	in
Material	Nutrient	lbs/ton	Ν	P ₂ O ₅	K ₂ O	(20 lb)ª	formulation
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
NH ₃	82%N	146	6.0	_	—	b	_
$H_{3}PO_{4}$	54% P ₂ O ₅	666		18.0		1.613	10.7
Potassium	22% K ₂ O						
Phosphate	22% P ₂ O ₅	546		6.0	6.0	0.097	1.2
Water		642	<u> </u>	—		—	
		2,000	6.0	24.0	6.0		11.9°

^a Salt index per unit (20 lb) of plant nutrients, listed in Table 1, also called the partial salt index.

^b Ammoniation of phosphoric acid to a 1-3-0 ratio forms a mixture of MAP and DAP.

° 0.32 SI/unit plant nutrient.

Mortvedt, "Calculating Salt Index"

The End

